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Abstract

Deep reinforcement learning has been widely used in video game playing. In this
project, we trained agents to play scenario ’search and hit’ and scenario ’health
gathering’ in game DOOM with deep reinforcement learning model including Deep
Q Learning with prioritized experience replay and policy gradient. Additionally
we implemented and evaluated the performance of the agents that were trained
with several different exploration strategies including random policy, ε-greedy, and
Boltzmann policy.
To conclude, the agent for the ’search and hit’ scenario achieved almost perfect
performance, and the agent for the ’health gathering’ scenario performed far better
than the baseline model. We also conclude that randomness in exploration policy
enables agents to gather more information about the environment and is important
in training agents.

1 Introduction

DOOM is the first shooter video game in the world. In the most basic version of this game, the player
can choose to move left, move right, or shoot. The goal for the player is to hit the target. Within the
game, there exist many different scenarios , including health gathering, where the player survive by
picking up some certain items called ’medkits’ that can heal some portions of the player’s health, and
search and hit, where the player aims at hitting the target as soon as possible.

In our project, We train an agent to perform well in the above scenarios in DOOM with Deep
Reinforcement Learning. Our agent will obtain information from the environment by taking action
and receiving feedback from the environment, namely the next state and the rewards. The feedback
can help agent to improve their policy to generate actions(policy-based algorithm) or improve their
understanding of the Q values of the state(value-based algorithm). An example of the two scenarios
can be shown in Figure 1 and Figure 2,

Figure 1: search and hit
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Figure 2: health gathering

For the two scenarios, we implemented different algorithms to solve the problem. The model
architecture, results, and analysis are covered in the next several parts.

2 Related Work

2.1 Reinforcement Learning

Reinforcement learning(1) is a framework containing an environment and an agent. The agent
interacts with the environment according to the current state. During the interaction, the agent makes
an action and a reward term is generated immediately. During the training process, the agent learns to
take actions to maximize the expected total reward. The difference between traditional supervised
learning and reinforcement learning is, in supervised learning, the machine learn from the ’teacher’,
while in reinforcement learning, the machine(i.e. agent)learn from past experience.

There are two basic prototypes of reinforcement learning: policy-based and value-based. Roughly
speaking, in policy-based learning, the machine learns an actor to make actions, in value-based
learning, the machine learns a critic to do evaluation. There are also some more advanced types
proposed these years. For example, A3C(Actor + Critic) (7) is a combination of these two.

2.2 Reinforcement Learning for Game Playing

In the field of deep reinforcement learning, one of the most significant work was DeepMind’s paper
in 2013(2). In this paper, they proposed to train an agent to play deep Atari games with reinforcement
learning. This is the very beginning of incorporating computer vision with reinforcement learning,
where we can use the visual data as input to the model. The performance of the reinforcement
learning algorithm surpasses the human performance in most Atari game . From then on, people
have started to use deep reinforcement learning to play more and more complicated video games, like
Flappy Birds(3), Geometry Dash(4), etc. and have obtained very good results.

2.3 Deep Reinforcement Learning for playing DOOM

The beginning of using deep reinforcement learning to play DOOM is the publishment of ViZDoom
(5) in 2016. ViZDoom is an AI platform for reinforcement learning from raw visual information. It is
primarily intended for machine learning and deep learning research in the video game playing field.
The main aim of it was to create an easy-to-use environment (6)with which people can build machine
learning models to train agents that act and learn based only on visible data from the game.

We trained our agents using the environment from ViZDoom with DQN and policy gradient. Addi-
tionally, we made improvements to the baseline model to get better results.

3 Dataset

As mentioned in the previous section, the environment in the ViZDoom package can provide us
with the frames of each step as the agent plays the game, which can be used as the input to a neural
network to extract high-level features.
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In Seita’s work(9), a new idea called ’stacking frames’ was raised. Stacking frame is a fixed size
deque consisting of the most recent frames. The number of frames is determined by the size of the
deque. Stacking frame is powerful in this case because it can offer a sense of motion to the agent
during the game.

This is how it works, assuming the size of the deque is 4:

• In the beginning of each episode, we initialize a deque of fixed size 4 and feed in 4 identical
initial frames of size 84 ∗ 84.

• Within each time step of this episode, we firstly process the picture to get a 84 ∗ 84 pixel
matrix, then feed the new matrix into our deque and remove the oldest one from our deque.

4 Methods

4.1 Scenario ’Search and Hit’: Deep Q-Learning

4.1.1 Deep Q Learning

For this task, we used value-based reinforcement learning model: Deep Q Learning(2). As mentioned
earlier, in value-based models, the machine will learn a critic to evaluate every actions.

In Q Learning, the neural network aims to approximate a function:

Q∗(s, a) = maxπE[r+γrt+1 + γ2rt+2 + . . . |st = s, at = a, π],

where st represents the state at time step t, rt represents the reward at time step t, and γ is the
discount rate. Therefore, the Q function at the time step t represents the highest expected discounted
sum of future rewards.

The Q function can be written in the recursive fashion:

Q∗(s, a) = Es′ [r + γmaxa′Q
∗(s′, a′)|s, a],

where s represents the current state and a is the action, s′ is the resulting state and r is the corre-
sponding reward. The result of the recursive calculation is denoted as Q-value of the corresponding
state and action.

4.1.2 Model Architecture

The architecture of our model is as follows:

Figure 3: Deep Q Network Architecture

As we can see, we firstly stack the images, then feed the stacked images into convolution layers. After
the the convolution layers, we flatten the output and feed it into fully-connected layers. We calculate
the Q-value for each of the action: left, right, and move. Then we make a decision and continue to
the next step.

4.1.3 Exploration v.s. Exploitation

In reinforcement learning, exploration(8) and exploitation are two important components in decision
making. Exploration allows the agent to gather more information via obtaining feedback from the

3



environment by executing non-optimal actions, while during exploitation agent choose the optimal
action(the action with largest Q value) given the current environment state. How to balance between
this two is very interesting and critical.

Generally speaking, we should try to make the best overall long-term strategy, which means that we
need to involve short–term sacrifices along the way.(10)

There are many strategies about this, including random policy, ε-greedy, and Boltzmann policy.

• Random-Policy: Under Random Policy, the agent will take an action sampled from an
uniform distribution during training. In other words, the policy(action) is purely random.

• ε-greedy: In this case, we have a threshold ε range from 0 to 1. We have two different
strategies with probability ε and 1 − ε. With probability ε, we still take an action ran-
domly(uniform distributed). In contrast, with probability 1− ε, we choose the action with
the largest Q value.

• Boltzmann Policy: As we can see, in the ε-greedy approach, when making a decision using
the Q value, the result is deterministic, which mean the agent will always make the same
decision when facing a single state. This is not what we want because we also expect our
agent to explore the new environment and take new actions to gather more information. In
order to solve this problem, we use Gibbs(Boltzmann) distribution here. The distribution is
as follows:

P (a) =
eQ(a)θ−1∑

a′:allactions e
Q(a′)θ−1

Essentially, we feed the Q values of each action into a softmax distribution. There is also
another parameter called gain factor β, which is also called the temperature. It is a positive
number representing the randomness in the given system(action making procedure).
If β goes to infinity, it means the system is totally random and the Boltzmann distribution
will converge to an uniform distribution. If β converges to 0, the decision making will be
like the deterministic way as we mentioned before.
Every time step, we sample from the Boltzmann distribution to get an action from our action
space.

In our work, we implemented the Deep Q Learning network as well as all of the exploration strategies.
The results, comparison and our analysis will be covered in the next section.

4.2 Scenario ’Health Gathering’: Policy Gradient

In the health gathering scenario, we implemented a policy gradient(7) algorithm to train the agent. In
policy gradient algorithm, the agent will learn a policy function which can map a environment state
to the probability of each action.

The idea behind it is that we parameterize the policy function π with parameter θ . We use the
expected reward as our objective function and optimize the function using gradient ascent to find the
local maximum.

When making a decision, there are two methods: deterministic and stochastic(11). In deterministic
setting, the agent will make a single action. The result is certain and it is kind of like the "hard
assignment". In contrast, in stochastic setting, the agent will make actions according to a probability
distribution, which means that the result is uncertain. So it is more like the "hard assignment".

In policy gradient, the agent uses stochastic method to make a decision each time. Then we will talk
more about the specific details in policy gradient networks.

4.2.1 Objective Function

As mentioned earlier, we use the expected total rewards as our objective function and attempt to
maximize it.

E(Rθ) =
∑
τ

Rθ(τ)P (τ |θ),
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where each τ is an episode containing a sequence of scenes.

In practice, it is very hard to calculate the expectation of the summed rewards since it is impossible to
integrate over all τs. So what we actually do is sampling a lot of τs and use the empirical result to
estimate the expectation.

So our objective function becomes:

E(Rθ) =
1

N

N∑
n=1

Rθ(τ
n),

where we use πθ to play N games to obtain N episodes: τ1, τ2, ..., τN

4.2.2 Gradient Ascent

In order to maximize the objective function(empirical expected total rewards), we use the gradient
ascent method.

We can calculate the gradient as follows:

∇Rθ =
∑
τ

Rτ∇P (τ |θ)

=
∑
τ

RτP (τ |θ)∇logP (τ |θ)

=
1

N

N∑
n=1

R(τn)∇logP (τ |θ)

For the log probability, we can expand it as:

logP (τn|θ) = logP (s1) +

T∑
t=1

P (ant |snt , θ) +
T∑
t=1

logP (rt, st+1|st, at)

Only the second term is related to θ, so we can get our gradient as:

∇logP (τ |θ) =
T∑
t=1

∇P (ant |snt , θ)

Therefore,

∇Rθ =
1

N

N∑
n=1

T∑
t=1

R(τn)∇P (ant |snt , θ)

5 Experiments and Results

5.1 Input Image Prepossessing

For each input image, we perform the following input image prepossessing steps,

• The input image is converted from RBG image to greyscale image.
• The input image is cropped to remove the roof as it contains no information to help agents

play the game.
• The input image is normalized by compressing the pixel value to be between 1 and 0.
• The input image is reshaped to 84x84.
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5.2 Evaluation

We evaluate the performance of our agents with the average rewards they obtained in the testing
settings. While evaluating performance, the agents will not execute exploration policy. In the case of
DQN, the agent will choose the action with the maximum Q value in condition of the state.

5.3 Scenario ’Search and Hit’: Deep Q-Learning

This scenario assigns 101 rewards for successfully killing the monster, -1 rewards for each frames
past, and -5 rewards for shooting without hitting the target. Basically, this configuration encourages
the agent to kill the monster as fast as possible and hit the monster accurately.

We take the stacked image as our input into our Deep Q Network. The stack size we use is 4. In each
episode, we run the agent to obtain the information from the environment, namely the triplet of state,
action and rewards. The experience is added the memory buffer. We backpropagate the model using
the loss calculated using the samples from the memory buffer. The detailed Deep Q Network are
plotted as in Figure 4.

Figure 4: Deep Q Network

Different exploration strategies including random-policy, ε-greedy-policy with different decay rate,
Boltzmann -policy with different temperatures are deployed to train our agents.

5.3.1 Random Policy

We plotted the rewards curve during the training process with random policy in Figure 5.

The value of the rewards when executing random policy is constantly low since the agent does not
utilize Q values corresponded to the state. We can also see the curve fluctuates a lot since every time
the agent randomly takes an action. We are surprised to see that test average rewards in the table 2
looks good. It suggests that our agent is not constrained by exploiting while training and learns from
the information obtained while exploring.
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Figure 5: Training curve for Random-Policy

5.3.2 ε-greedy

For ε-greedy, we fix the starting ε values to be 1 and the minimum ε to be 0.01. We tested two
different decay rate: 1e-4 and 1e-5. The training curves for these two configurations are plotted in
Figure 6 and Figure 7.

Figure 6: Epsilon-Greedy-Policy with ε = 1e-4 Figure 7: Epsilon-Greedy-Policy with ε = 1e-5

The results in table 2 indicate that slow decay rate in exploration possibility helps to improve the
performance of the agents, because slower decay can leave the agent more space to explore new
actions to gather information, which is beneficial to its learning process.

5.3.3 Boltzmann-Policy

During training, Boltzmann-Policy assigned different possibility to the actions according to the Q
values. If the temperature is very low(close to 0), the decision making process with will converge
to a random policy since the Boltzmann distribution will converge to an uniform distribution. The
training curves for Boltzmann-Policy with temperature β = 2, 1, 0.5 are plotted in Figure 8, 9 and
Figure 10. The results in table 2 also indicate that randomness in the exploration policy helps agent
to achieve better performance.
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Figure 8: Boltzmann-Policy w. temperature = 2 Figure 9: Boltzmann-Policy w. temperature = 1

Figure 10: Boltzmann-Policy w. temperature = 0.5

5.4 Test Performance for Each Configuration

In table 2, we summarized the test average rewards of each configuration obtained in the test settings.
The test average rewards are calculated from the average of the rewards of 1000 episodes of game
play using the trained agent.

Baseline model refers to the agent that execute random action in the test setting. Note that the
Random-Policy model is different from baseline model in the way that Random-Policy agent learn
from exploration and execute the action with the highest Q value in the test setting.

Because it is a rather easy game, human can achieve perfect performance. The performance achieved
by our best model DQN under Boltzmann-Policy with temperature = 2 is very close to the perfect
human performance.

Table 1: Test average rewards for different exploration scheme

Model Configuration Test Average Rewards

Baseline None -75.18
Human None 78.21
Random-Policy None 55.11
ε-Greedy-Policy decay rate = 1e-4 33.76
ε-Greedy-Policy decay rate = 1e-5 70.83
Boltzmann-Policy temperature β = 0.5 56.7
Boltzmann-Policy temperature β = 1 66.20
Boltzmann-Policy temperature β = 2 75.42
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5.5 Scenario ’Health Gathering’: Policy Gradient

This configuration of this scenario is as follows, the rewards for living for one frame is 1, and the
reward for death(health = 0) is -100. The agent will constantly lose health and will eventually die.
The agent in this scenario will learn to survive by finding the "medkits". However, we don’t explicitly
tell the agent that medkits will help the agent to survive. The agent need to learn the logic themselves
by getting feedback from the environment.

We implemented the policy gradient algorithm with batch size = 1000 and discounting rate = 0.05 to
train the agent to play the ’Health Gathering’ scenario. The training curve is shown in figure 11.

Figure 11: Training curve for policy gradient applied to the Scenario ’Health Gathering’

Table 2: Test average rewards for the scenario ’Health Gathering’

Model Test Average Rewards

Baseline 476.9
Human 2100
Policy Gradient 1533.12

The average test score for our agent is 1533.12 after testing for 1000 episodes. The maximum score
for the game is 2100, that is you survive for a minute in the game. Therefore, 1533.12 is a decent
score, but it can still be improved by experimenting with other algorithms.

6 Conclusions

• The balance between exploration and exploitation is important in reinforcement learning
models. We should leave the agent some space to explore new things in order to gather
more information. We need to sacrifice short-term benefits sometimes to achieve long-term
success.

• In our case, stochastic approach(Boltzmann-policy) outperforms deterministic ap-
proach(always picking the one with largest Q value). This suggests it important to solving
machine learning problems in a probabilistic way. Introducing more uncertainty can make
the machine learn better.
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7 Future Work

We plan to implement more advanced models for the ’search and hit’ scenario in the future, including
Double Q Learning(12) and Deuling Q Learning, and Deep Recurrent Q Learning(13).

We also plan to try more scenarios in DOOM to solve more complicated and interesting problems
using deep reinforcement learning.
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