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In Cosmology, Computer simulations is vital in understanding 
how the primordial universe evolved into the universe we 
observe today. 

Data for this project came from Illustris simulation, the most 
accurate cosmology simulation that is available public. 
Redshift=0 simulations are deployed. The dark matter 
simulation and full hydrodynamic simulation are on the same 
time step and correspond to each other.

Visualization of Illustris dark matter simulation at reshift=0 (left)
Zoom-in visualization of corresponding dark matters and galaxies. (Right)

Model Structure

However, simulations of the baryonic component require 
vast computation power and time. To combat this challenge, 
we propose to map the simulations of the dark matter to 
the simulations of galaxies through convolutional neural 
networks instead of physical laws.  

Example galaxy evolve in time from left to right, from when the universe was 
a quarter its current age, to the present.
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Future Work

Planning future works includes incorporate power spectrum 
similarity into loss function during training, evaluate model 
applicability on different times of universe (different redshifts) 
together with different attributes of galaxies, and studying 
convolution filters to discover physical rules.  

WeightedNNLoss:
:

The model prediction on galaxy density had gain high recall 
compared to the target. The model is working well when 
predicting whether certain place exist galaxies, as illustrated in 
figure. 

Illustration of step one of our two phase network:  a simple one-layer-convolution was used to 
capture the monotonically relation between the density of dark matters and galaxies, and 
generating a rough distribution of where galaxies are possibly located

The classification image are togetherly used with a U-net structure for the 
final prediction. Recurrent Residual U-Net (R2Unet) was used as it is more 
deeper than traditional U-Net without introducing extra Parameters, allowing 
us to capture more cross-correlations between different part of Universe. 

Where the power spectrum is calculated by taking the Fast 
Fourier Transform of density fields.

Monopole Power spectrum log-log comparison between testing prediction and real simulation
Using one layer conv as first phase (left), and using R2Unet as first phase (right)

Based on the sparsity and imbalance of our dataset, we 
deployed two phase training. This allow us to refine our result 
using Unet after a high recall convolution classification Layer. 

A pair of Sliced Visualization of Galaxy density prediction in a 2D box of 12.5 Mpc*12.5 Mpc
With (Up) and without (Down) Counter Blob Los)

The 3D monopole power spectrum of predicted and 
simulated galaxy density fields are displayed below.

CounterBlobLoss:

Illustration of grid representation of whole simulations
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In order to correct for a spatially varying galaxy selection 
function, we normalize the observed galaxy density p(x) to a 
dimensionless over-density.

To further address the issue of image sparsity and Galaxy 
clustering, we also introduced two specifically designed loss 
function for our network. The idea is to penalize on the 
unbalanced prediction.

Whole simulation was divided  into 1024✕1024✕1024 grid. 
Then the number of galaxies in each grid cell was counted to 
create the density image p(x).

To combat the sparsity and high dimensionality of the 3D 

data, we modify the structure of the U-Net, replacing 

convolution layer with recurrent convolution layer to ensures 

better feature representation without extra parameters, 

adding residual module to help training deep architecture.

A pair of Sliced Visualization of Galaxy density prediction in a 2D box of 12.5 Mpc*12.5 Mpc
With (Down) and without (Up) Counter Blob Loss

A pair of Sliced Visualization of Galaxy density prediction in a 2D box of 12.5 Mpc*12.5 Mpc
With (Down) and without (Up) Counter Blob Loss

Illustration of step one of our two phase network: 
 a simple one-layer-convolution was used to capture the monotonically relation 

between the density of dark matters and galaxies, and generating a rough distribution of 
where galaxies are possibly located

Illustration of step two of two phase netwrok:
 Recurrent Residual U-Net (R2Unet) structure to predict based on previous 

classification mask

Two Phase network Illustration
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