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Introduction In order to correct for a spatially varying galaxy selection To further address the issue of image sparsity and Galaxy The model prediction on galaxy density had gain high recall
compared to the target. The model is working well when

predicting whether certain place exist galaxies, as illustrated in
figure.

function, we normalize the observed galaxy density p(x) to a clustering, we also introduced two specifically designed loss

In Cosmology, Computer simulations is vital in understanding dimensionless over-density. function for our network. The idea is to penalize on the

how the primordial universe evolved into the universe we unbalanced prediction.
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Based on the sparsity and imbalance of our dataset, we
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a quarter its current age, to the present. deployed two phase training. This allow us to refine our result - . X .
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Conv. Net with kernel size 3 X 3

Future Work

Conv. Net with kernel size 1 X 1

lllustration of step one of our two phase network:

a simple one-layer-convolution was used to capture the monotonically relation Planning future works includes incorporate power spectrum
similarity into loss function during training, evaluate model
applicability on different times of universe (different redshifts)

together with different attributes of galaxies, and studying

between the density of dark matters and galaxies, and generating a rough distribution of
where galaxies are possibly located

o 2 convolution filters to discover physical rules.
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