Machine learning to predict clinical outcomes from RNS background ECoG

Byron Sun Xiaojing Wu Anli Liu

Limitations of current RNS practice

- 1. Long intervals between seizures and between programming visits (2-3 months)
- 2. Very limited understanding of how stimulation parameters should be adjusted

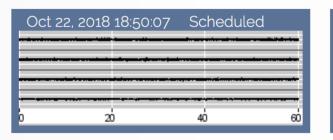
Can we build a reliable classifier for an individual patient which predicts clinical outcome, based on retrospective review of that patient's EEG?

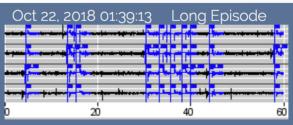
RNS parameter adjustment for a given patient

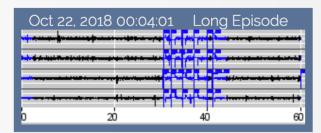
- How to quickly and accurately determine effectiveness?
- Goal: build reliable classifier for *individual* patient → generate multiple predictions per day with newly recorded "scheduled" ECoGs → help physicians better understand the patients'

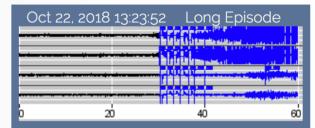
clinical conditions and make better parameter adjustment based on the prediction

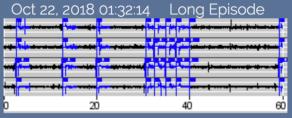
Patient 231

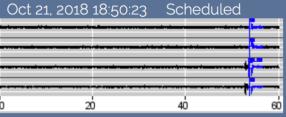


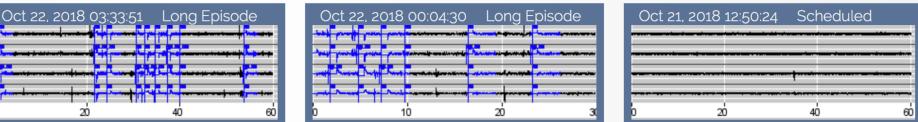












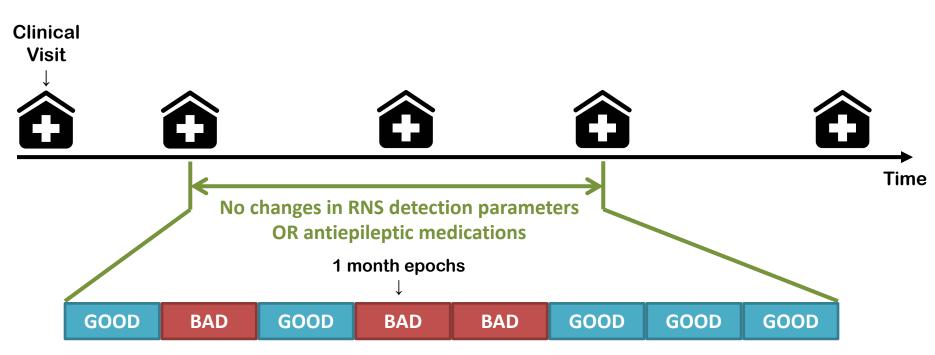
Representative patient, demonstrating difference in EEG characteristics between (1) Scheduled ECoGs and (2) Long Episode Detection (Triggering Stimulation). Some LE become electroclinical seizures.

RNS parameter adjustment for a given patient

- How to quickly and accurately determine effectiveness?
- What data should we use to predict patients' clinical conditions?
- Make use of "scheduled" ECoG segments
 - Recorded multiple times per day, data abundance

- Indicative of long-term neuromodulatory effects of chronic electrical stimulation

EEG Selection Criteria

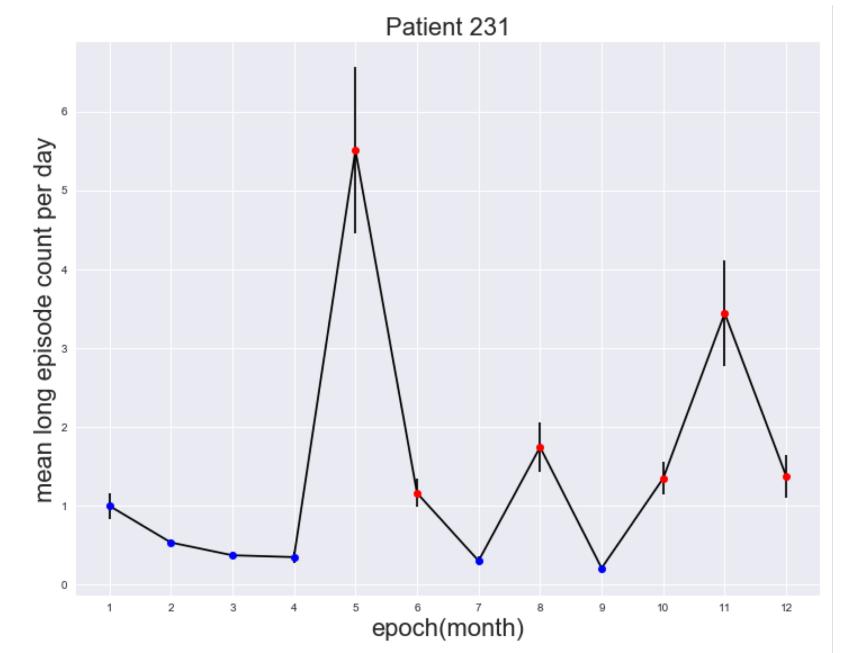


Find long periods of time:

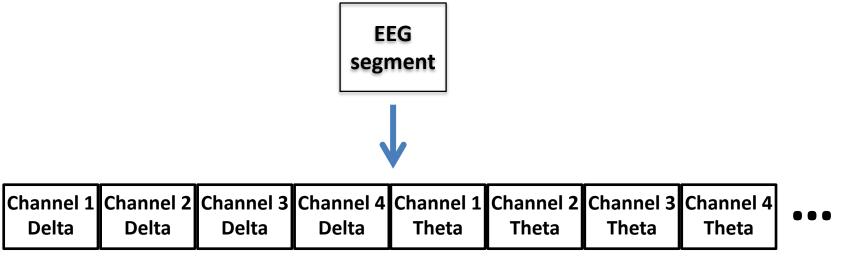
- Long episodes detected by same parameters
- Any EEG pattern change cannot be caused by AED changes

GOOD: relatively low average daily long-episode countBAD: relatively high average daily long-episode count

Average long-episode number per day, over one-month epochs



Feature calculation



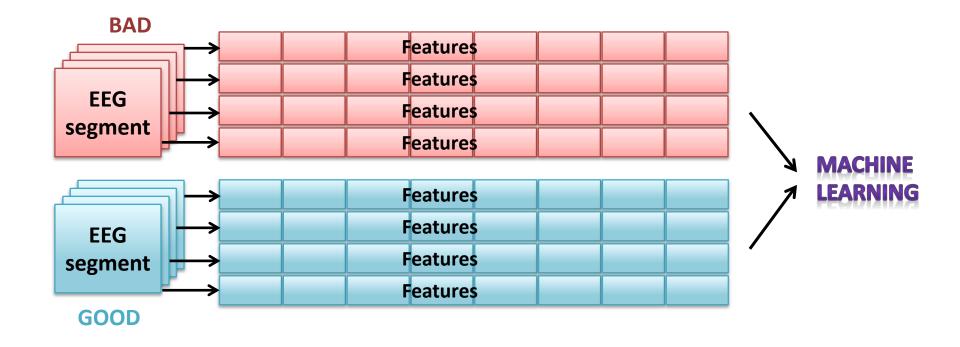
(band power)

Classic frequency bands:

Delta = 0.5 - 4 Hz Theta = 4 - 8 Hz Alpha = 8 - 12 Hz Beta = 12 - 25 Hz Low gamma = 25 - 50 Hz High gamma = 50 - 124.9 Hz Entire band = 0.01 - 124.9 Hz

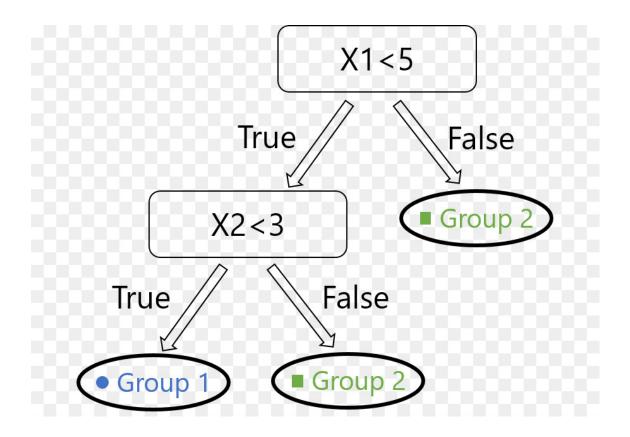
4 channels X 7 frequency bands

= 28 features per EEG segment



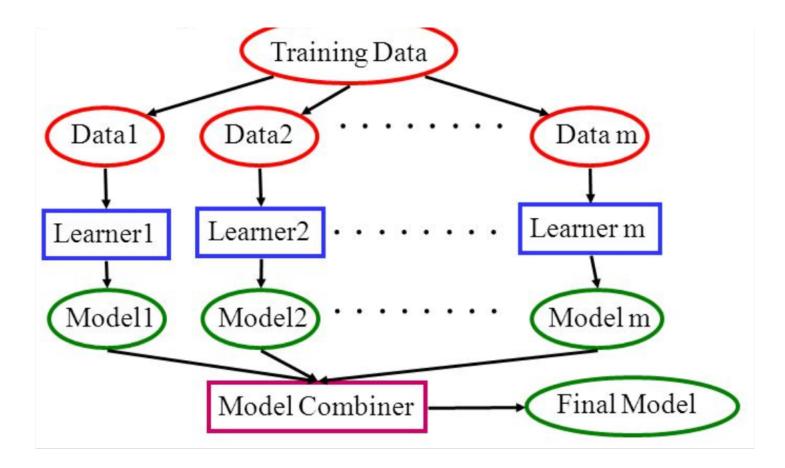
Machine learning methods

Decision tree



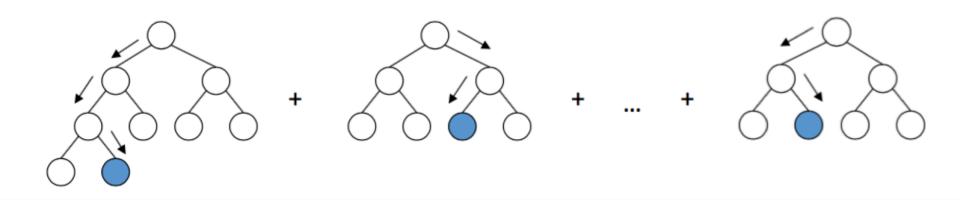
Machine learning methods

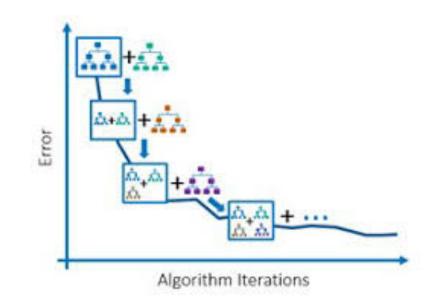
Ensemble Model: Random Forest, Gradient Boosting



Machine learning methods

Gradient Boosting





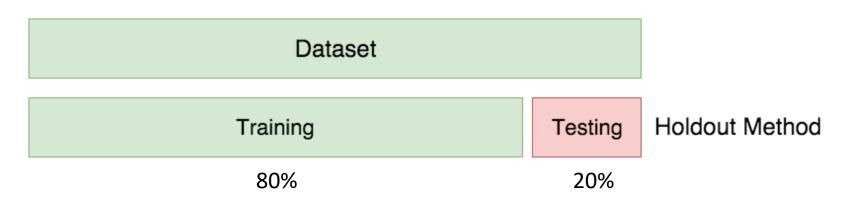
Patient Selection Criteria

- 1. Good RNS upload compliance
- 2. Have scheduled ECoGs multiple times per day
- 3. Have a relatively clean EEG background
- 4. Good clinical correlation between long episodes and clinical seizures
- 5. Infrequent medication changes
- 6. Past the 6 month window of implant effect, and past the detection adjustment stage.

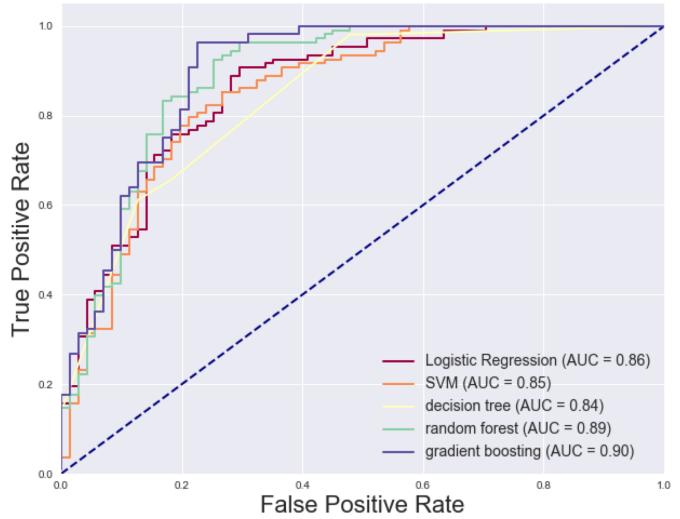
Analyzed patients

Patient ID	Patient Initials	Gender	Age	Clean periods (Days)	Leads location
NY231	DB	F	33	379	L hippocampal depth R hippocampal depth
NY222	AJ	Μ	25	255, 215	L insular depth L superior temporal strip
NY229	TR	М	26	318	Insular depth L mid-central strip

Training & Testing

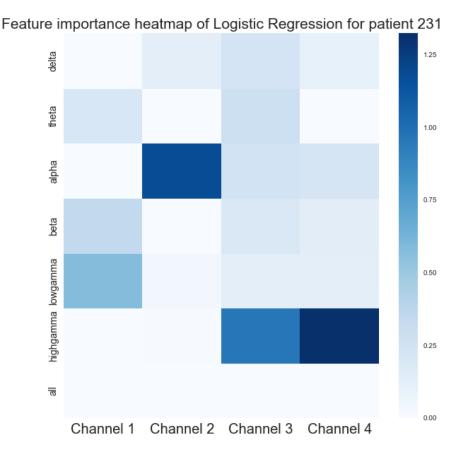


Patient 231: ROC for all classifiers



Best classifier for 231 is gradient boosting with AUC = 0.90, accuracy = 87.15%

Logistic Regression



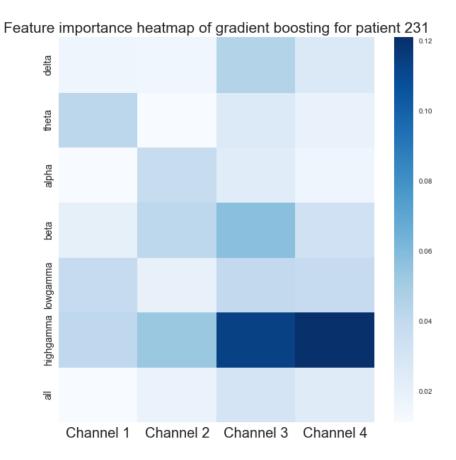
Important features:

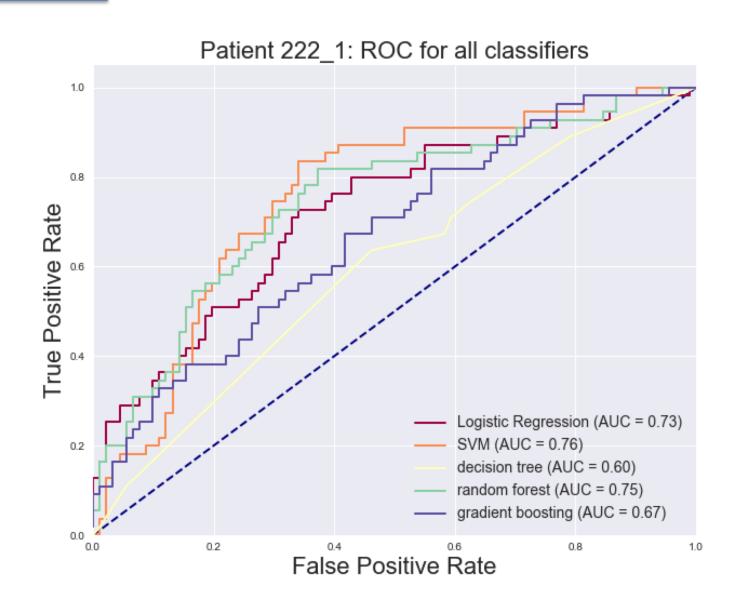
- high gamma Channel 4
- alpha Channel 2
- high gamma Channel 3

Important features:

- high gamma Channel 4
- high gamma Channel 3
- beta Channel 3

Gradient boosting





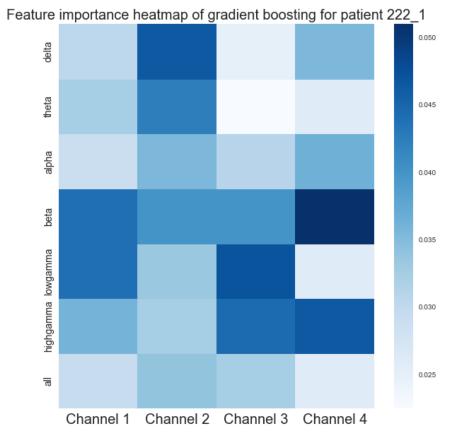
Best classifier for 222_1 is SVM with AUC = 0.76, accuracy = 71.92%

Logistic Regression Feature importance heatmap of Logistic Regression for patient 222_1 delta 0.5 theta 0.4 alpha 0.3 beta highgamma lowgamma 0.2 0.1 B 0.0 Channel 1 Channel 2 Channel 3 Channel 4

Important features:

- beta Channel 4
- low gamma Channel 3
- delta Channel 2

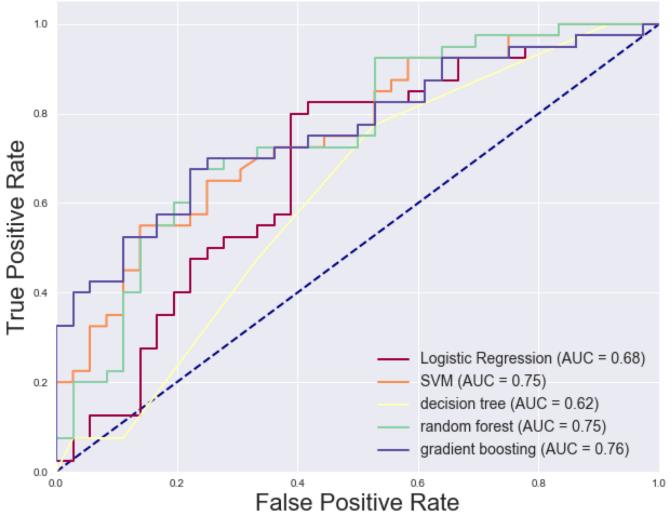
Gradient boosting



Important features:

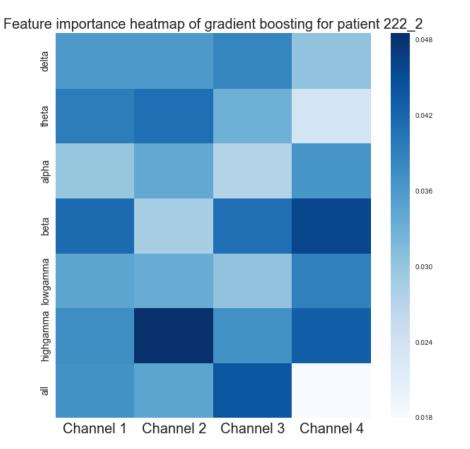
- beta Channel 4
- low gamma Channel 3
- delta Channel 2

Patient 222_2: ROC for all classifiers



Best classifier for 222_2 is gradient boosting with AUC = 0.76, accuracy = 72.37%

Gradient boosting



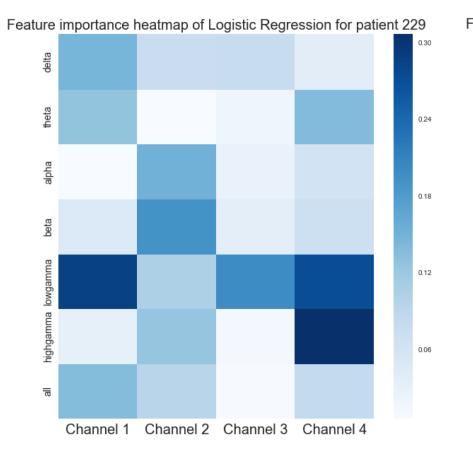
Important features:

- high gamma Channel 2
- beta Channel 4
- all Channel 3

Patient 229: ROC for all classifiers 1.0 0.8 True Positive Rate Logistic Regression (AUC = 0.85) SVM (AUC = 0.83) 0.2 decision tree (AUC = 0.74) random forest (AUC = 0.84) gradient boosting (AUC = 0.82) 0.0 0.2 0.4 0.6 0.8 0.0 1.0 False Positive Rate

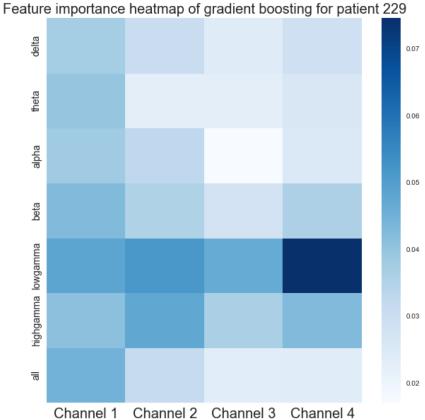
Best classifier for 229 is Logistic Regression with AUC = 0.85, accuracy = 81.43%

Logistic Regression



Important features:

- high gamma Channel 4
- low gamma Channel 1
- low gamma Channel 4

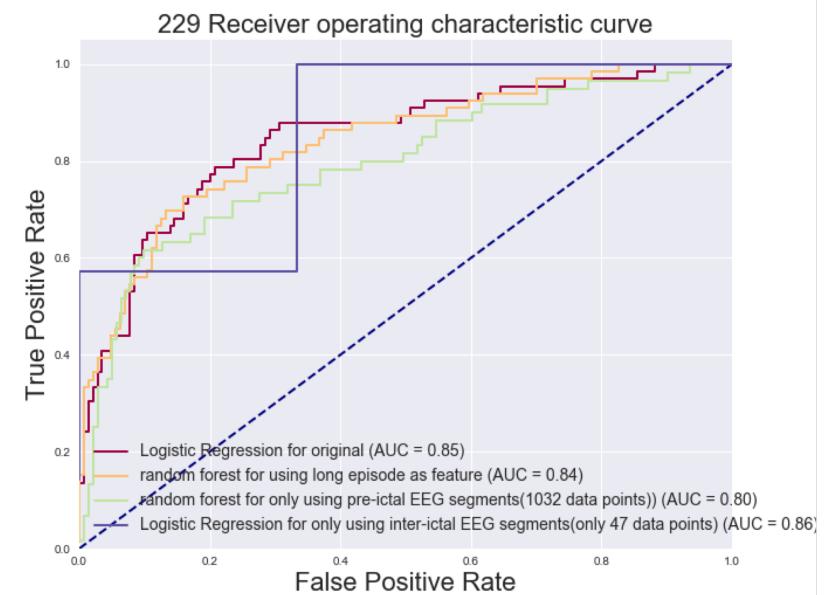


Important features:

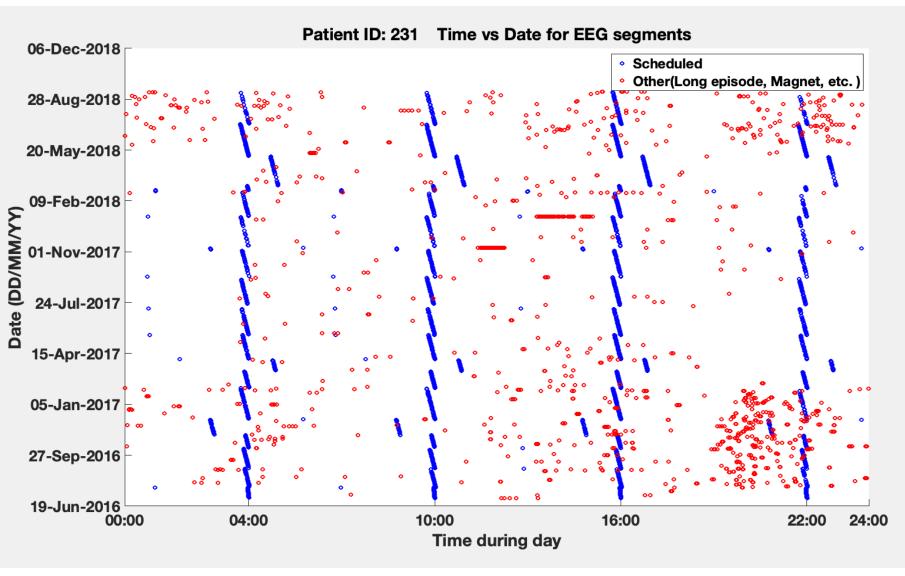
- low gamma Channel 4
- low gamma Channel 2
- low gamma Channel 1

Results – discussion 1

Discover the role of pre-ictal EEG segments in predicting clinical condition

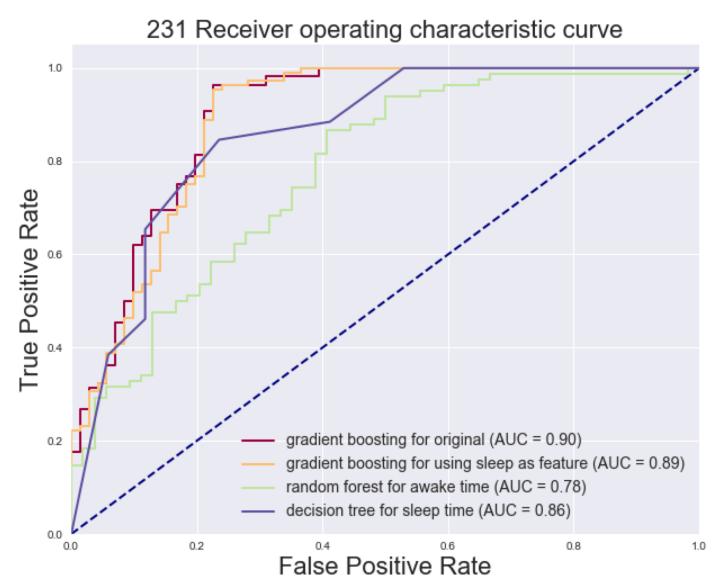


Discover the role of sleep in predicting clinical conditions

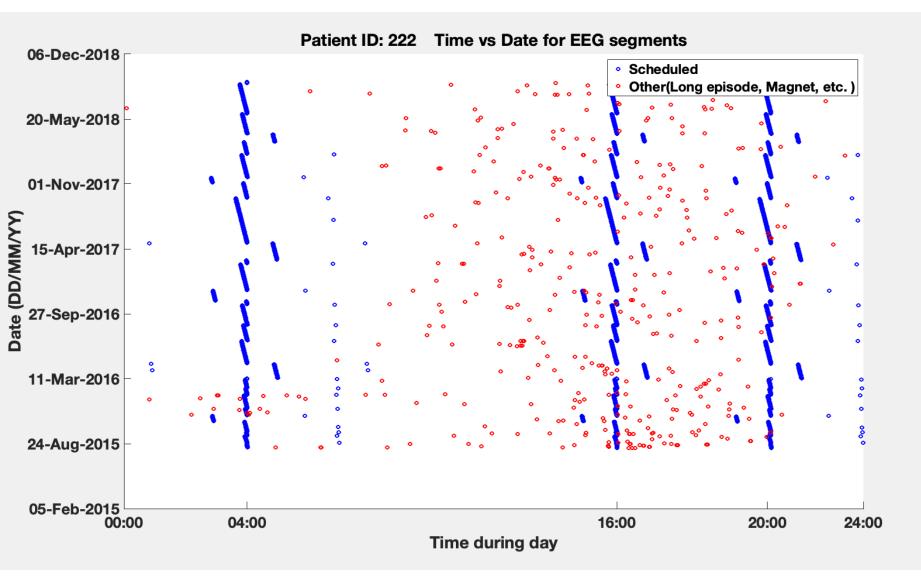


Results – discussion 2

Discover the role of sleep in predicting clinical conditions

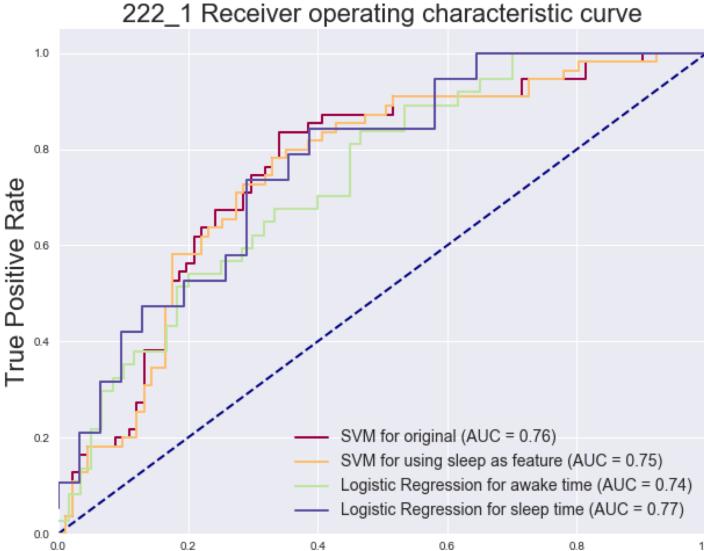


Discover the role of sleep in predicting clinical conditions



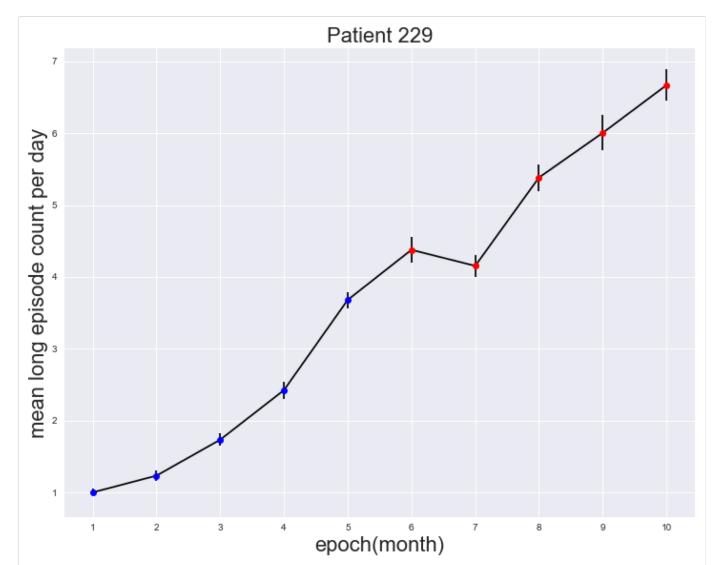
Results – discussion 2

Discover the role of sleep in predicting clinical conditions



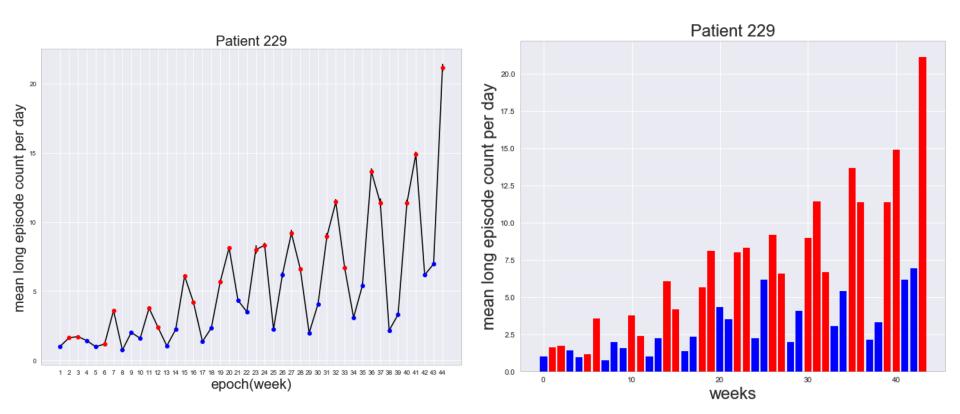
False Positive Rate

1.0



Average long-episode number per day, over one-month epochs

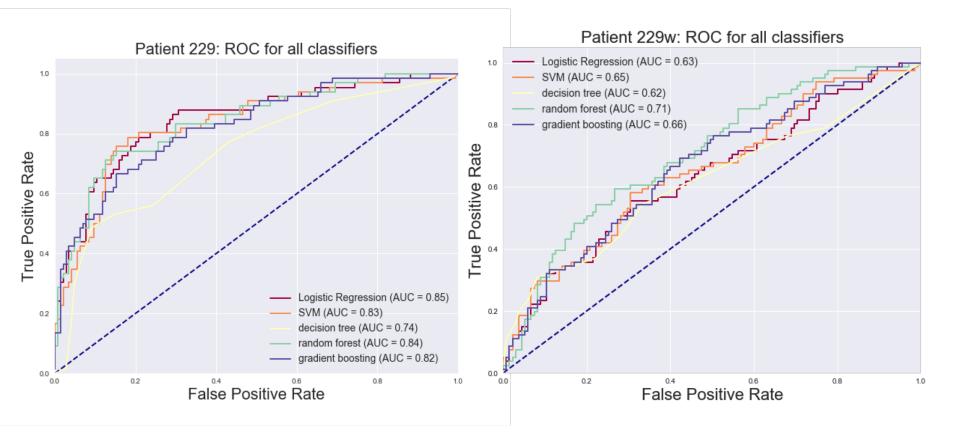
Average long-episode number per day, over one-week epochs



Results – discussion 3

229 monthly ROC plot

229 weekly ROC plot



Summary and Discussion

- Background ECoG can be used to predict clinical outcomes for an individual patient.
- The implication of best classifier. Gradient boosting and Random forest combine the prediction of large number of weak classifiers to achieve better results than using single classifier and prevent overfitting problem.
- Feature importance analysis implicates greater contributions from higher frequency bands.
- Sleep ECoG achieve better classification performance when compared to awake ECoG. The reason may be that sleep EcoG shares stronger correlations with ictal activity.
- Background EEG appears to be equally valuable as pre-ictal EEG in predicting clinical outcome.

Future steps

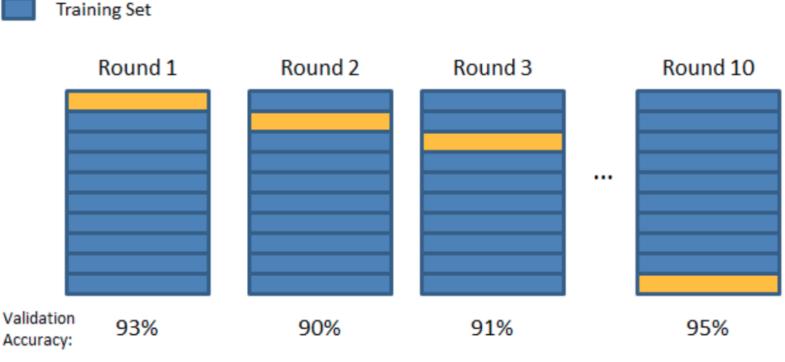
• Train the classifier on more patients to see if the machine learning method can generalize to more clinical cases

• Incorporate multidien rhythm information directly in classifier to improve performance

Appendix

Validation Set

Training, Testing and Cross-validation



Final Accuracy = Average(Round 1, Round 2, ...)