

Null and Outlier Detection

Zhe Huang, Daoyang Shan, Yueqiu Sun

Team Singular Point

Introduction

our project, we proposed to implement a generalized In automated procedure that cleans and selects the appropriate outlier detection strategy for any given data set (if possible) without exploring its specific domain knowledge.

Methodology

MR-AVF (Map-Reduce version of AVF):

- Finished with 2 Map-Reduce phases.
- O(1) memory, O(n) mapper/reducer time complexity.
- Provides speedup with respect to number of processing nodes.
- Algorithm detail available in our final report. **Result and Discussion**

Our design follows the following structure: 1: Cleaner cleans the raw data, decide which outlier detection algorithm should be used, and preprocess the data based on selected algorithm.

2: Processed data is passed to either k-means clustering or AVF, where nulls and outliers are detected.

Raw Data Cleaner Clustering

3: Use shell script to automate the

whole process instead of manual work on individual file.

Cleaner:

- Remove those columns with too many nulls or blanks.
- Classify all columns into numerical, categorical or other.
- Drop 'others' since we assume no domain knowledge.
- If the rest are mainly numerical, select k-means, otherwise apply

Cleaner:

- Our cleaner determines that 37 out of 50 data sets are suitable for automatic outlier detection.
- Dropped data sets include: time series data, messy data, too many blank/null for every column.....
- 8 suitable for clustering, rest for AVF.

Sample Clustering (ny8v-zzzb.tsv)

binning on numerical columns and select AVF.

AVF

K-Means (distance based algorithm):

- Identify rows with blank or null as null points.
- Specify a range of possible k's that we explore. For each k, apply clustering and get the corresponding WSSSE score.
- Find the optimal k based on the largest second order derivative of the approximated WSSSE curve.
- Assign each point to a cluster, find those points that far away from their centroids as outliers.

AVF (frequency based algorithm):

- Calculate the AVF score for each point (row).
- Points with the least AVF score are chosen as outliers.

Animal	Tag	AVF Score	
Cat	Α	2+2=4	
Cat	В	2+1=3	

- Points with max
- 'distance' are classified as outliers.
- k=3, visualization.

AVF vs. MR-AVF

• Sample output

index	avf
18682	2 6317842
34213	1 6758317
51412	1 6858309
56252	3 6859581
63151	1 6861442

Points with least AVF Score are classified as outliers

- We record the **wall time** of the whole process.
- Time may be influenced by I/O, num of rows, difficulty of processing, etc.
- It seems that MR-AVF is better for large data sets.

Our first implementation is finished with Spark.

1+2=3Dog Α

```
foreach point \mathbf{x}_i, i = 1 \dots n do
    foreach attribute l, l = 1 \dots m do
        Count frequency f(x_{il}) of attribute value x_{il};
    end
end
foreach point \mathbf{x}_i, i = 1 \dots n do
    foreach attribute l, l = 1 \dots m do
       AVFScore(\mathbf{x}_i) += f(x_{il});
    end
    AVFScore(\mathbf{x}_i) /= m;
end
Return k outliers with min_i(AVFScore);
```

Name	Size	MR-AVF(time)	AVF(time)
pvqr-7yc4	6.4*1e8	356	1400
tm6d-hbzd	2.6*1e8	123	200
r4s5-tb2g	360725	55	20

More Discussion

- More complicated cleaning mechanism?
- Better outlier detection algorithm for hybrid data set (to our surprise, almost no research is focused on hybrid data)