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1. Introduction

The Big Bang Theory states that from 11 to 15 billion years
ago, the universe was only the size of an atom. Then it sud-
denly starts to expand at an incredible rate. The protons and
neutrons started to form gas and the gas began to from stars
and galaxies. One thing that is significant to the research
in how the universe evolve is the dark matter which make
up mass of the universe and cannot be directly detected.
This dark matter forms the skeleton on which galaxies form,
evolve, and merge. In other words, the growth, internal
properties, and spatial distribution of galaxies are likely to
be closely connected to the growth, internal properties, and
spatial distribution of dark matter halos.

Computer simulation plays an important part in the research
in cosmology. Because of the important role the dark matter
plays in the formation of the galaxies, computer simulation
of dark matter is widely implemented and achieved great
success. However, the dark matter simulation is limited in a
way that it cannot predict the distribution of galaxies made
up of normal matter(stars, gas, etc.). This limitation make it
hard to directly connect the simulation to the observations.

The hydrodynamic simulation overcome the limitation by
tracking the formation of stars and black holes, the motion
of gas and the expansion of the universe. The simulation
contains thousands of galaxies that agree with the obser-
vation in the real universe. However, simulations of the
baryonic component require vast computation power and
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time, making the wide adoption of such practice unrealistic.

Example galaxy evolve in time from left to right, from when the universe was
a quarter its current age, to the present.

Halo Occupation Distribution (HOD) is a function of M, the
mass of a dark matter halo. It describes how the distribution
of the galaxies is related to the distribution of the dark matter,
therefore providing us a way to populate the universe using
the dark matter simulation. However, this method comes
with its own limitation: parameters of the function needs to
be tuned to generate the simulation of the universe. And the
parameter tuning process is long and painful.

Convolutional neural networks has been shown to success-
fully extract information from a variety of computer vision
tasks, such as image classification, detection and segmenta-
tion. CNN has been primarily applied to 2D images. In our
paper, we explore the use of CNN to perform the mapping
from 3D dark matter simulation to the full hydrodynamic
simulation. The problem can be formulated as a supervised
learning problem in which the input is the dark matter simu-
lation and the target is the full hydrodynamic simulation. In
CNN, trainable 3D filters and local pooling operations are
applied to the input to capture local information and extract
a hierarchical of increasingly complex features. The fea-
tures can be used to predict the target simulation parameters
including galaxies count, mass and etc.

2. Relevant Research

In the application of cosmology, CNN has been demon-
strated to gives significantly better estimates of wg and og
cosmological parameters from simulated convergence maps
than the state of art methods and also is free of system-
atic bias(Ribli et al., 2018). (Ravanbakhsh et al., 2016)
estimating cosmology parameters from the volumetric rep-
resentation of dark-matter simulations using 3D convolu-
tional networks with high accuracy. (Kamdar et al., 2016)
demonstrated ML as a promising and a signicantly more
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computationally efficient tool to study small-scale structure
formation and presented a machine learning (ML) frame-
work to study galaxy formation in the backdrop of a hydro-
dynamical simulation.

Semantic Segmentation aims to predicted the class for each
pixel in the image and a one of the key problems in com-
puter vision. Deep convolution neural networks are proved
to achieve great performance in Semantic Segmentation
task. (Simonyan & Zisserman, 2014) U-Net is one of the
most important model in image segmentation.(Ronneberger
et al., 2015a) The advantages of The U-Net model is 1. The
maxpool layer in each level significantly reduce the number
of parameters by downsizing the input image. 2. The model
can be trained end to end 3. The model can be trained using
very few images 4. The model is fast. Segmentation of a
512x512 image takes less than a second on a recent GPU. 5.
The model achieve very good performance. It won the ISBI
cell tracking challenge 2015 for segmentation of neuronal
structures in electron microscopic stacks.

(Drozdzal et al., 2016) point out the importance of using
skip-connections in a deep neural network. Skip connection
in U-net achieve great results in image segmentation task by
preserving spatial information lost in the encoder.

Here, we present a first attempt at using end to end convo-
lution neural networks to predict hydrodynamic simulation
directly from the distribution of dark matter. In the follow-
ing, Section 3 introduce the data and describes our data
preparation process. Section 4 introduces the methodology
of One-layer convolution, U-net, R2Unet and two phase
models. Section 5 presents quantitative results and visualize
our prediction hydrodynamic simulation and compare it to
the target hydrodynamic simulation. Section 6 concludes
the paper. Section 7 propose some future work.

3. Data and its Preparation

In this project, we use the dark matter and subhalo simula-
tions from illustris data (Vogelsberger et al., 2014), which
has particle property information at a box size of 106.5
Mpc. The cosmological parameters used in the simulation
is adopted from WMAP9 (Nine-Year Wilkinson Microwave
Anisotropy Probe Observations) results. More speepcificly,
Q,, =0.2726, Qp = 0.7274, 0 = 0.0456, g = 0.809, n,
=0.963,Hy = 100 h kms' Mpc! and h = 0.704. (Hinshaw
etal., 2012).

We use the level-1 simulations within illustris, which is the
simulation with highest resolution among all. It initially
consists of 6,028,568,000 hydrodynamic cells and the same
number of Dark Matter particles. The snapshot we selected
is captured when redshift equals O with the age of universe
at 13.752 Gigayears, which represent the current universe.
At this time step, the simulation contains 5280615062 gas

resolution elements, 595243070 stellar particles, and 32552
supermassive black hole particles. The number of Dark
Matter within this snapshot is 6028568000, and the number
of galaxies is 4366546.

Figure 1. Visualization of Illustris dark matter simulation at
reshift=0 (left), and Zoom-in visualization of corresponding dark
matters and galaxies. (Right)

Following the extraction of positional information on galax-
ies and dark matters. We divide the whole simulation box
into 1024*1024%1024 grid. The count on numbers of dark
matters and galaxies in each sub-box was used to create
the density grids. Within the grid, the range of particles
within a cell is from 0 to 747865 for dark matters and 0
to 10 for galaxies. And the percentage of non-zero cells is
44.99% for dark matters and 00.37% for galaxies. Some
Visual Representation of the data can be found in figure 2.
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Figure 2. Illustration of grid representation of whole simulations

Since any galaxy survey can only observe a particular part
of the Universe, consisting of an angular mask of the area
observed, and a radial distribution of galaxies. On top of the
particle densities, in order to correct for a spatially varying
galaxy selection function, we normalize the observed galaxy
and dark matter density p(x) to a dimensionless over-density
field displayed in equation 1, where p(z) is the expected
mean density. This corrected field is more related with
gravitational velocities and hence has more relevance with
the formation of galaxies.

5(z) = plx) — p(x) 0
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During modeling, the density data were separated into cor-
responding sub-boxes of size 32*32%32 and used as inde-
pendent training points. There are a total of 32768 unique
boxes being used during this project. And because of the
homogeneous of particles in Universe. The top 71.8% of all
boxes are used for training, the following 9.3% are used for
validation and then the bottom 18.7% are used for testing.

4. Models

For this section, we are going to discuss the models that we
tried throughout the project, including one-layer convolu-
tion, U-Net and Recurrent Residual U-Net. We also develop
a two-phase training model, composed of a classification
mask and a regression prediction, to get the final prediction.

4.1. One-layer Convolution

The first model that we tried is a simple one-layer convo-
lution neural network. The neural network is composed
of a convolution with 8 kernels, each with size 3 x 3,
followed by a ReLU6 non-linearity, and then another 1 X
1 convolution followed by ReLU. The detailed structure
is illustrated in Fig 4. The first 3 x 3 convolution extract
local features, and the second 1 x 1 convolution acts as a
fully-connected layer, to predict galaxy number from these
local features.

(1,32.32.32) (1,32,32,32)

(8.32,32,32) Model Structure

Conv. Net with kernel size 3 X 3

Conv. Net with kernel size 1 X 1

Figure 3. One Layer Convolution Neural Network

The inspiration for the model comes from our assumption
about how galaxy is formed. The assumption is that, in a
certain region, the more dark matter there is, the more likely
that they would come into each other, collide, and finally
foster a galaxy. This assumption implies a local correlation
between the number of dark matter particles and number of
galaxies, which resonates with the assumption we have in
convolutional neural nets applications.

4.2. U-Net

Of course our assumption about how galaxy is formed is
relative naive. Besides the local information, information
from larger scale is also helpful in prediction, since a galaxy
do get influenced also from distant galaxies. These addition

in assumption propels us to also try U-net, which is a model
that can take both local structure and global structure into
account.

U-Net as deep convolution neural network first proposed in
(Ronneberger et al., 2015b) working with image segmen-
tation. The network first reduced the spatial information
as the increment of feature information with conventional
neural nets followed by ReLU and MaxPooling, then gradu-
ally recover to the target size by level with up convectional
layer. At each level of expansive pathway, the concatena-
tion of high-resolution feature from the previous step was
performed, as illustrated in (Figure 4). This architecture is
reasonable to use for our task as it is in coincidence with of
purpose of feature extraction and image reconstruction on
3D representations.
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Figure 4. U-Net

In addition to the original architecture, change has been
made to yield better galaxy prediction result. At first, the
prediction from the model showed over-weighted similarity
between itself and the input. Thus, the last skip-connection
(the highest level) has been removed from the model to
discourage it from simply copying information from high
resolution feature.

4.3. Recurrent Residual U-Net (R2Unet)

Recurrent Residual U-Net proposed in (Alom et al., 2018)
was an upgrade from U-Net with deeper structure. Ex-
cept the skip connection mechanism, there is one Recurrent
Residual Convectional Neural Net (R2CNN) block at each
level for both contracting path and expansive path. Within
the R2ZCNN block, it contains 2 recurrent convolution layers,
and the residual connection mechanism has been applied to
the input of the output from the last recurrent convolution
layer.

In each recurrent convolution layer, the initial state of the
input followed with t times convolution layers. At each time
step, the output was element-wise summed up with the input
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Figure 5. Recurrent Residual U-Net
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Figure 6. Recurrent Residual Convolution Block (R2CNN)

as the new input to next time step. The recurrent convolution
block helps to accumulate the feature from different time
step to accumulate the feature representation.

Figure 7. Recurrent Convolution Block t =2

4.4. Two Phase Models

The high sparsity in our simulation dataset (99.6% of whole
pixels does not contain any galaxies) adds a great difficulty

to our training. Because of the high sparsity, even if our
model predicts O galaxy everywhere, we would still get
a high accuracy. In order to overcome this problem, we
modified both our loss function and model structure.
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Figure 8. Two Phase Model Structure

Instead of the regular 12 loss, we use a weighted 12 loss
function, which has a form of

Lweighted = Z (pz - tz)z +w X Z (pz - tz>2

i:t; =0 i:t; >0

where p; is our prediction of the number of galaxies in
position i, and ¢; is the groundtruth number of galaxies in
position i. w is the relative weight of how much we should
penalize more if the model predict a position with galaxies
to be 0, compared to if the model predict galaxy existence
in a position with no galaxy in the target. The higher w is,
the higher the recall for our model, and at the same time
precision would be lower.

We also modified our model structure. Instead of using
one model to do the final prediction, we divide the
prediction into two phases. In the first phase, we train a
model to predict what are the locations that has a higher
probability of having galaxies. We use this model as a mask,
and train another model separately to do the prediction
on the number of galaxies. The final prediction is the
prediction from the second model, with the locations’
corresponding probability of having a galaxy, which is
the output from our mask model, greater than a certain
threshold. The model structure is illustrated in Fig 3.
We hope that by dividing the prediction into two phases,
our model is be able to learn to how gradually refine its
predictions, which is easier than learning everything at once.

In our experimentation, we tried two settings of the two-
phase model: one with a one-layer convolution mask model
and R2Unet prediction model, another with both mask and
prediction model be R2Unet. The prediction is evaluated in
the power spectrum in Fig 6.



Submission and Formatting Instructions for ICML 2018

4.5. Counter-Blob Loss

Following the two phase training, we first train a classifi-
cation model, to predict how likely a position has a galaxy.
From the visualizations, we find that the model tend to pre-
dict a blob of areas to have high probabilities, which means
it predict every position within the blob to have a large prob-
ability. This blobby prediction is not desired compared to
the real target. In order to remove this blob, we come up
with a counter-blob loss, which has the form of

Lo = Z Z (1 = (pi = py))*pip;

i JEN;

where p; and p; are the probabilities of galaxy existence
in position i and j. IV; denote all neighboring position for
position i. This loss would push for more differences for
adjacent positions, which removes the blob, because blob
is caused when all neighboring positions have the same
high probability of having galaxy. We also want to penalize
more when the probability is large, for example, we want to
push for more difference between two adjacent positions
with probability 0.9, 0.9, compared to two positions with
probability 0.1, 0.1.

We combine this loss together with weighted cross entropy
loss to train the first phase mask model. The result can be
seen in Fig 7.

5. Result
5.1. Quantitative Result

Evaluating the result, the weighted L2 and counter blob
loss had been stunningly effective. Different weight on L2
loss give different precision and recalls when evaluating the
result density as a binary field. Adjusting weights will give
us a trade-off between recall and the precision, as seen in
(Table 1). R2Unet shows similar accuracy comparing to
Original Unet, but increased in performance on both Recalls
and Precisions.

Counter-blob loss also boosted the performance by increas-
ing precision and the overall accuracy.

Table 1. Trade-off result using different weights on Loss Function

Model Configuration Accuracy Recall Precision
One-Layer Conv Loss Weight: 300 93.8 98.8 6.3

Unet Loss Weight: 5 99.6 59.8 39.2
Unet Loss Weight: 10 99.4 69.3 29.7
R2Unet Loss Weight: 5 99.52 63.17 4191
R2Unet Loss Weight: 10 99.29 74.8 32.42
R2Unet Loss Weight: 25 98.8 8431 21.05
R2Unet with Counterblob loss  Loss Weight: 5, wblob=1 99.66 4927 5242
R2Unet with Counterblob loss  Loss Weight: 5, wblob=10  99.72 3473  63.76

The inclusion of Counter-blob loss was also being effec-
tive in reducing the incorrect galaxy clustering appeared
in prediction. As seen in figure 9 and 10, the prediction
around galaxy clusters appeared in high density fields of
the original sources was significantly decreased in size and
appearance.

Dark Matters from Simulation Subhalos from Simulation

Predicted Probability Distribution

Figure 9. Source, Target and Prediction Visualization For sliced
simulation with (Bottom) and without (Top) Counter-Blob Loss

5.2. Visualization

As figure 11 shows, our model effectively learned the po-
sition of the galaxies when the distribution of galaxies and
dark matters are relevantly sparse. However, when its com-
pact, it shows that our model could not predict the exact
position. One of the reason is the imbalance of our dataset.
As described in the above section, we tried to minimize this
effect by enforcing weight and build the loss function to
penalize the blobs within the prediction. In all, it approx-
imately reflected the density distribution of the galaxies.
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Figure 10. Source, Target and Prediction Visualization For sliced
simulation with (Bottom) and without (Top) Counter-Blob Loss

Figure 11. Two Phase Result

5.3. Power Spectrum

The 2-point correlation function as used in astrophysics de-
scribes one way in which the actual spatial or the angular
distribution of galaxies deviates from a simple Poisson dis-
tribution. The power spectrum is the Fourier transform of
the correlation function. The spatial two-point or function is
defined as the excess probability of finding a pair of galaxies,
compared with that expected for a random distribution. And
the power spectrum was related to two point correlation by
equation 2.

1

£(r) = ﬁ/dk E*P (k)

sin(kr)
e 2

r

Hence power spectrum can be considered an evaluation
metric for the statistical properties of galaxy density field.

The 3d Monopole power spectrum of our predicted den-
sity and actual simulated galaxy density from are displayed
below. Where the reference line on noise is calculated by
(Equation 3)

n = log (xGalazies)
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Figure 12. Monopole Power spectrum log-log comparison between
testing prediction and real simulation for both model with one layer
conv as first phase and R2Unet as first phase

Where the power spectrum in this case is calculated by
taking the Fast Fourier Transform on density fields.

I(k) = /5(T)eik'rd37‘ 4)

—ik.r d3k
5(r) = / 5(k)e™* e )
P(kl)kQ) - (271_(_)3 <5(k1)75(k2)> (6)

We can see from the power spectrum comparison that the
two model predicts better in terms of long-term frequencies.
But still have some divergence when dealing with short-
term frequencies. This is consistent with our assumption
that noises and localized correlations are harder to predict
solely based on dark matter density.
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6. Conclusion

As we illustrated above, deep neural network, especially
Residual Recurrent U-net has the better performance to
predict from dark matter distribution to galaxies density
distribution than the shallow neural network models. In
addition, the new created loss function, ’counterblob” loss,
works well to penalize the blobs appeared in the galaxy
density distribution. Further more, as the result shown in
power spectrum plot, the proposed “Two Phase Training”
eventually generated the quite satisfied density distribution
for galaxies. In all, we prove the applicability of Machine
Learning models in the task of Simulating Galaxies.

7. Future Work

Planning future works includes incorporate power spectrum
computation into loss function during training. This will al-
low us to optimize the model based on distribution similarity,
which might helps to capture more underlying correlation
while training.

We also plan on evaluate model applicability on different
times of universe, and seek for generalization. Adding
velocity and merge tree information is also another direction
to further boost the model performance.
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